Polynomial Constraints in Causal Bayesian Networks

نویسندگان

  • Changsung Kang
  • Jin Tian
چکیده

We use the implicitization procedure to generate polynomial equality constraints on the set of distributions induced by local interventions on variables governed by a causal Bayesian network with hidden variables. We show how we may reduce the complexity of the implicitization problem and make the problem tractable in certain causal Bayesian networks. We also show some preliminary results on the algebraic structure of polynomial constraints. The results have applications in distinguishing between causal models and in testing causal models with combined observational and experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Network Induction via Local Neighborhoods

In recent years, Bayesian networks have become highly successful tool for diagnosis, analysis, and decision making in real-world domains. We present an efficient algorithm for learning Bayes networks from data. Our approach constructs Bayesian networks by first identifying each node’s Markov blankets, then connecting nodes in a maximally consistent way. In contrast to the majority of work, whic...

متن کامل

Algebraic Causality: Bayes Nets and Beyond

The relationship between algebraic geometry and the inferential framework of the Bayesian Networks with hidden variables has now been fruitfully explored and exploited by a number of authors. More recently the algebraic formulation of Causal Bayesian Networks has also been investigated in this context. After reviewing these newer relationships, we proceed to demonstrate that many of the ideas e...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

An efficient symmetric polynomial-based key establishment protocol for wireless sensor networks

An essential requirement for providing secure services in wireless sensor networks is the ability to establish pairwise keys among sensors. Due to resource constraints on the sensors, the key establishment scheme should not create significant overhead. To date, several key establishment schemes have been proposed. Some of these have appropriate connectivity and resistance against key exposure, ...

متن کامل

A Qualitative Characterisation of Causal Independence Models Using Boolean Polynomials

Causal independence models offer a high level starting point for the design of Bayesian networks but are not maximally exploited as their behaviour is often unclear. One approach is to employ qualitative probabilistic network theory in order to derive a qualitative characterisation of causal independence models. In this paper we exploit polynomial forms of Boolean functions to systematically an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007